Question 1.

Which of the following numbers are divisible by 5 or by 10:

- (i) 3725
- (ii) 48970
- (iii) 56823
- (iv) 760035
- (v) 7893217
- (vi) 4500010

#### Solution:

- (i) 3725: divisible by 5 as last digit is 5.
- (ii) 48970: divisible by 5 and 10 both as last digit is 0.
- (iii) 56823: not divisible by 5 and neither by 10 as last digit is 3.
- (iv) 760035: divisible by 5 as last digit is 5.
- (v) 7893217: not divisible by 5 and neither 10 as last digit is 7.
- (vi) 4500010: divisible by both 5 and 10 as last digit is 0.

## Question 2.

Which of the following numbers are divisible by 2, 4 or 8:

- (i) 54014
- (ii) 723840
- (iii) 6531088
- (iv) 75689604
- (v) 786235
- (vi) 5321048

## Solution:

(i) 54014

The last digit is 4, hence it is divisible by 2 but not by 4 and 8.

## (ii) 723840

This number is divisible by 8, hence it should get divided by all its factors i.e. 2 and 4 (using property 1). So, 723840 is divisible by 2, 4 and 8.

## (iii) 6531088

This number is divided by 8.

So, by using property I, it should also get divided by all its factorise 2 and 4.

Hence, 6531088 is divisible by 2, 4 and 8.

# (iv) 75689604

This number is divisible by 4 and not by 8. By using property 1, if it is divisible by 4, then it should also get divisible by its factors also i.e. 2.

# (v) 786235

Since, the last digit of the number is 5, which is even. Hence, It is not divisible by 2, 4 and 8.

# (vi) 5321048

This number is divisible by 8.

So, by using property 1, if it is divisible by all its factors i.e., 2 and 4.

Question 3.

Which of the following numbers are divisible by 3 or 9:

- (i) 7341
- (ii) 59031
- (iii) 12345678
- (iv) 560319
- (v) 720634
- (vi) 3721509

## Solution:

A number is divisible by 3 if the sum of its digit is divisible by 3 or 9.

- (i) 7341 = 7 + 3 + 4 + 1 = 15: divisible by 3.
- (ii) 59031 = 5 + 9 + 0 + 3 + 1 = 18: divisible by 3, 9.
- (iii) 12345678 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36: divisible by 3, 9.
- (iv) 560319 = 5 + 6 + 0 + 3 + 1 + 9 = 24: divisible by 3.
- (v) 720634 = 7 + 2 + 0 + 6 + 3 + 4 = 22: not divisible by 3, 9.
- (vi) 3721509 = 3 + 7 + 2 + 1 + 5 + 0 + 9 = 27: divisible by 3, 9.

Question 4.

Examine the following numbers for divisibility by 11:

- (i) 10428
- (ii) 70169803
- (iii) 7136985

Solution:

- (i) 10428 = 1 + 4 + 8 = 13 and 0 + 2 = 2Their difference = 13 - 2 = 11, divisible by 11
- (ii) 70169803 = 7 + 1 + 9 + 0 = 17 and 0 + 6 + 8 + 3 = 17

Their difference = 17 - 17 = 0, divisible by 11

(iii) 7136985 = 7 + 3 + 9 + 5 = 24 and 1 + 6 + 8 = 15Their difference = 24 - 15 = 9 not divisible by 11 Question 5.

Examine the following numbers for divisibility by 6:

- (i) 93573
- (ii) 217944
- (iii) 5034126
- (iv) 901352
- (v) 639210
- (vi) 1790184

#### Solution:

A number is divisible by 6 if it is divisible by 2 as well as by 3.

- (i) 93573: not divisible by 6 because, it is not divisible by 2.
- (ii) 217944: divisible by 6, as it is divisible by both 2 and 3.

The last digit of 217944 is 4, which is divisible by 2.

: The number is divisible by 2.

Now, the sum of the digits 217944 = 2 + 1 + 7 + 9 + 4 + 4 = 27

27 is divisible by 3.

Hence, given number is divisible by  $2 \times 3 = 6$ 

(iii) 5034126: divisible by 6, as it is divisible by both 2 and 3.

The last digit of 5034126 is 6, which is divisible by 2. Now, sum of 5034126 = 5 + 0 + 3 + 4 + 1 + 2 + 6 = 21 21 is divisible by 3.

Hence, given number 5034126 is divisible by 6.

# (iv) 901352

The last digit 901352 is 2, which is divisible by 2

: The given number is divisible by 2

Now, the sum of the digits of 901352 is

$$9+0+1+3+5+2=20$$

20 is not divisible by 3

The given number 901352 is not divisible by 6 So we can say 93573 is not divisible by 6

# (v) 639210

The last digit of 639120 is 0, which is divisible by 2,

: The given number is divisible by 2

Now, the sum of the digits of 639120 is

$$6+3+9+1+2+0=21$$

21 is divisible by 3

The given number 639120 is divisible by 6

# (vi) 1790184

The last digit of 1790184 is 4, which is divisible by 2

∴ The given number is divisible by 2

Now, the sum of the digits of 1790184 is

$$1 + 7 + 9 + 0 + 1 + 8 + 4 = 30$$

30 is divisible by 3.

: The given number 1790184 is divisible by 6

Question 6.

In each of the following replace '\*' by a digit so that the number formed is divisible by 9:

- (i) 4710 \* 82
- (ii) 70 \* 356722

Solution:

(i) 4710 \* 82

The given number = 4710 \* 82 Sum of its given digits = 4 + 7 + 1 + 0 + 8 + 2 = 22

The number next to 22 which is divisible by 9 is 27.

- $\therefore$  Required smallest number = 27 22 = 5
- (ii) 70 \* 356722

The given number = 70 \* 356722 Sum of its given digits

$$= 7 + 0 + 3 + 5 + 6 + 7 + 2 + 2 = 32$$

The number next to 32 which is divisible by 9 is 36.

 $\therefore$  Required smallest number = 36 - 32 = 4

Question 7.

In each of the following replace '\*' by (i) the smallest digit (ii) the greatest digit so that the number formed is divisible by 3:

- (a) 4 \* 672
- (b) 4756 \* 2

Solution:

- (a) 4 \* 672
- (i) Smallest digit

Sum of the given digits = 4 + 6 + 7 + 2 = 19

- ∵ 19 is not divisible by 3
- ∴ Smallest digit (non-zero) is = 2
- (ii) Greatest digit

The greatest digit is 8

i. e. 19 + 8 = 27 which is divisible by 3

- (b) 4756 \* 2
- (i) Smallest digit

Sum of the given digits = 4 + 7 + 5 + 6 = 24

- ∵ 24 is divisible by 3
- : Smallest digit is 0.
- (ii) Greatest digit

The greatest digit is 9

i. e. 24 + 9 = 33 which is divisible by 3.

Question 8.

In each of the following replace '\*' by a digit so that the number formed is divisible by 11:

- (i) 8 \* 9484
- (ii) 9 \* 53762

Solution:

(i) 8 \* 9484

Sun of the given digits (at odd places) from the right

= 4 + 4 + required digit

= 8 + required digit

Sum of the given digits (at even places) from the right = 8 + 9 + 8 = 25

Difference of sums = 25 - (8 + required digit) = 17 - required digit

11 is the number smaller than 17, who gets divided by 11

∴ For the above difference to be divisible by 11 required digit = 6

Hence the required number is 869784

Sum of the given digits (at odd places) from the right

$$= 2 + 7 + 5 + 9 = 23$$

Sum of the given digits (at even places) from the right

$$= 6 + 3 + required number = 9$$

Difference of sums = 23 - (9 + required number) =

14- required number

For the above difference to be divisible by 11 required digit = 3

$$= 14 - 3 = 11$$

11 is divisible by 11

Hence, the required number is 9353762

Question 9.

In each of the following replace '\*' by (i) the smallest digit 00 the greatest digit so that the number formed is divisible by 6:

- (a) 2 \* 4706
- (b) 5825 \* 34

Solution:

(a) 2 \* 4706

If the number is divisible by 6 then the number should also get divisible by 2 and 3.

- $\Rightarrow$  The last digit of 2 \* 4706 is 6, so it is divisible by 2.
- $\Rightarrow$  The sum of 2 \* 4706

$$= 2 + 4 + 7 + 0 + 6 = 19$$

(i) Smallest required number to be added in 19 is 2.

As 
$$19 + 2 = 21$$
 (i.e. 21 is divisible by 3)

(ii) Greatest required number to be added in 19 is 8

As 
$$19 + 8 = 27$$
 (i.e. 27 is divisible by 3)

If the number is divisible by 6, then it should get divisible by 2 and 3.

- $\Rightarrow$  The last number is 4, so it is divisible by 2
- ⇒ The sum of 5825 \* 34

$$= 5 + 8 + 2 + 5 + 3 + 4 = 27$$

- (i) The smallest number to be added in 27 is 0 27 + 0
- = 27 (27 is divided by 3)
- (ii) Greatest number to be added in 27 is 9

i.e. 
$$27 + 9 = 36$$

36 is divided by 3

#### Question 10.

Which of the following numbers are prime:

- (i) 101
- (ii) 251
- (iii) 323
- (iv) 397

Solution:

(i) 101

We have, 101 = 1 × 101

- $\Rightarrow$  101 has exactly two factors 1 and 101 itself.
- ∴ 101 is a prime number.

## (ii) 251

We have, 251 = 1 × 251

- ⇒ 251 has exactly two factors 1 and 251 itself.
- ∴ 251 is a prime number.

#### (iii) 323

We have,  $323 = 1 \times 323 = 17 \times 19$ 

- : Factors of 323 are 1, 17, 19, 323
- $\Rightarrow$  323 has more than two factors.
- ∴ 323 is not a prime number.

## (iv) 397

We have, 397 = 1 × 397

 $\Rightarrow$  397 has exactly two factors 1 and 397 itself.

397 is a prime number.

Question 11.

Determine if 372645 is divisible by 45.

Solution:

To determine if 25110 is divisible by 45, we test it for divisible by 5 and 9 both. Divisibility of 372645 by 5

- $\therefore$  Number in the unit's place of 372645 = 5
- $\therefore$  372645 is divisible by 5

Divisibility of 372645 by 9

Sum of the digits of the number 372645 = 3 + 7 + 2 + 6 + 4 + 5 = 27

- ∵ 27 is divisible by 9
- ∴ 372645 is divisible by 9

As 372645 is divisible by 5 and 9 both and 5 and 9 are co–prime numbers, so 372645 is divisible by  $5 \times 9 = 45$ 

Question 12.

A number is divisible by 12. By what other numbers will that number be divisible?

#### Solution:

The number divisible by 12, should also get divisible by all its factors.

 $\Rightarrow$  So, the numbers by which the given number is divisible are : 1, 2, 3, 4, 6.

Question 13.

A number is divisible by both 3 and 8. By which other numbers will that number be always divisible? Solution:

Let a natural number, say n, be divisible by both 3 and 8.

As 3 and 8 are co–prime numbers using property n is divisible by  $3 \times 8$  i.e. 24.

Thus, the given number is always divisible by 24.

⇒ So the given number should get divided by all the factors of 24.

Hence, the other number by which the given numbers is always divisible are :

1, 2, 4, 6, 12, 24

Question 14.

State whether the following statements are true (T) or false (F):

- (i) If a number is divisible by 4, it must be divisible by 8.
- (ii) If a number is divisible by 3, it must be divisible by 9.
- (iii) If a number is divisible by 9, it must be divisible by 3.
- (iv) If a number is divisible by 9 and 10 both, it must be divisible by 90.
- (v) If a number divides two numbers separately, then it must divide their sum.
- (vi) If a number divides the sum of two numbers, then it must divide the two numbers separately.
- (vii) If a number is divisible by 3 and 8 both, it must be divisible by 12.

- (i) False
- (ii) False
- (iii) True
- (iv) True
- (v) True
- (vi) False
- (vii) True
- (vii) False