Question 1.

State which of the following fractions are proper, improper or mixed:

(i)
$$\frac{15}{26}$$

(ii)
$$\frac{17}{12}$$

(iii)
$$5\frac{2}{3}$$

$$(iv) \frac{6}{8}$$

(v)
$$11\frac{5}{7}$$

$$(vi) \frac{117}{8}$$

(vii)
$$\frac{222}{333}$$

$$(viii) \frac{531}{247}$$

Solution:

(i)
$$\frac{15}{26}$$
 = Proper

(i)
$$\frac{15}{26}$$
 = Proper (ii) $\frac{17}{12}$ = improper

(iii)
$$5\frac{2}{3} = \text{Mixed}$$
 (iv) $\frac{6}{8} = \text{Proper}$

(iv)
$$\frac{6}{8}$$
 = Proper

$$(v)11\frac{5}{7} = Mixed$$

$$(v)$$
 11 $\frac{5}{7}$ = Mixed (vi) $\frac{117}{8}$ = Improper

(vii)
$$\frac{222}{333}$$
 = Proper (viii) $\frac{531}{247}$ = improper

Question 2.

Convert the following improper fractions into mixed numbers:

(i)
$$\frac{17}{3}$$

(ii)
$$\frac{119}{15}$$

(iii)
$$\frac{961}{13}$$

(iv)
$$\frac{117}{32}$$

Solution:

$$(i) \ \frac{17}{3} = 5\frac{2}{3}$$

(i)
$$\frac{17}{3} = 5\frac{2}{3}$$
 (ii) $\frac{119}{15} = 7\frac{14}{15}$

(iii)
$$\frac{961}{13} = 73\frac{12}{13}$$
 (iv) $\frac{117}{32} = 3\frac{21}{32}$

$$(iv) \ \frac{117}{32} = 3\frac{21}{32}$$

Question 3.

Convert the following mixed number into improper fractions:

(i)
$$7\frac{2}{11}$$

(ii)
$$3\frac{5}{48}$$

(iii)
$$13\frac{7}{64}$$

(iv)
$$7\frac{2}{3}$$

Solution:

(i)
$$7\frac{2}{11} = \frac{11 \times 7 + 2}{11} = \frac{79}{11}$$

(ii)
$$3\frac{5}{48} = \frac{48 \times 3 + 5}{48} = \frac{149}{48}$$

(iii)
$$13\frac{7}{64} = \frac{64 \times 13 + 7}{64} = \frac{832 + 7}{64} = \frac{839}{64}$$

(iv)
$$7\frac{2}{3} = \left(7\frac{2}{3}\right) = \left(\frac{3\times7+2}{3}\right) = \frac{23}{3}$$

Question 4.

Write the fractions representing the shaded regions.

Are all these fractions equivalent?

Yes, all the fractions are equivalent.

Question 5.

Write the fractions representing the shaded regions and pair up the equivalent fractions from each row:

Solution:

(i)
$$\frac{1}{2}$$

(ii)
$$\frac{4}{6} \Rightarrow \frac{2}{3}$$

(iii)
$$\frac{3}{9} \Rightarrow \frac{1}{3}$$

$$(iv) \frac{2}{8} \Rightarrow \frac{1}{4}$$

$$(v) \frac{3}{4}$$

(a)
$$\frac{4}{16} \Rightarrow \frac{1}{4}$$

(b)
$$\frac{8}{12} \Rightarrow \frac{2}{3}$$

(c)
$$\frac{12}{16} \Rightarrow \frac{3}{4}$$

(d)
$$\frac{4}{8} \Rightarrow \frac{1}{2}$$

(e)
$$\frac{6}{18} \Rightarrow \frac{1}{3}$$

Equivalent fractions are:

- (i) 🕳 (d)
- (ii) 🚾 (b)
- (iii) 🛥 (e)
- (iv) 🛥 (a)
- (v) (c)

Question 6.

- (i) Find the equivalent fraction of $\frac{15}{35}$ with denominator 7.
- (ii) Find the equivalent fraction of $\frac{2}{9}$ with denominator 63.

Solution:

$$_{(i)}\frac{15}{35} = \frac{...}{7}$$

Let the numerator be a

$$\Rightarrow$$
 15 × 7 = 35 × a

$$a = \frac{15 \times 7}{35}$$

$$\Rightarrow$$
 a = 3

$$\therefore \frac{15}{35} = \frac{3}{7}$$

$$(ii)\frac{2}{9} = \frac{...}{63}$$

Let the numerator, which needs to be calculated as x

$$\Rightarrow$$
 2 × 63 = 9 × x

$$\Rightarrow x = \frac{2 \times 63}{9}$$

$$\Rightarrow$$
 x = 14

$$\therefore \frac{2}{9} = \frac{14}{63}$$

Question 7.

Find the equivalent fraction of $\frac{3}{5}$ having

- (i) denominator 30
- (ii) numerator 27.

Solution:

(i) $\frac{3}{5}$ having denominator 30

Multiply and divide the fraction by 6, we get

$$\frac{3}{5} \times \frac{6}{6} = \frac{18}{30}$$

(ii) $\frac{3}{5}$ having numerator 27

Multiply and divide the fraction by 9, we get

$$\frac{3}{5} \times \frac{9}{9} = \frac{27}{45}$$

Question 8.

Replace '....' in each of the following by the correct number.

(i)
$$\frac{2}{3} = \frac{...}{15}$$
 (ii) $\frac{7}{18} = \frac{42}{...}$

(iii)
$$\frac{4}{...} = \frac{12}{15}$$
 (iv) $\frac{...}{11} = \frac{70}{154}$

Solution:

(i)
$$\frac{2}{3} = \frac{2 \times 5}{3 \times 5} = \frac{10}{15}$$

Hence '...' is replaced by 10

(ii)
$$\frac{7}{18} = \frac{7 \times 6}{18 \times 6} = \frac{42}{108}$$

Hence '...' is replaced by 108

(iii)
$$\frac{4}{5} = \frac{4 \times 3}{5 \times 3} = \frac{12}{15}$$

Hence '...' is replaced by 5

(iv)
$$\frac{5}{11} = \frac{5 \times 14}{11 \times 14} = \frac{70}{154}$$

Hence '...' is replaced by 5

Question 9.

Check whether the given pairs of fractions are equivalent:

(i)
$$\frac{3}{10}$$
, $\frac{12}{40}$

(ii)
$$\frac{5}{8}$$
, $\frac{30}{48}$

(iii)
$$\frac{4}{6}$$
, $\frac{30}{20}$

(iv)
$$\frac{7}{13}$$
, $\frac{5}{11}$

Solution:

(i)
$$\frac{3}{10}$$
, $\frac{12}{40}$
= $3 \times 40 = 120$
= $10 \times 12 = 120$
 $120 = 120$

.. The given fractions $\frac{3}{10}$ and $\frac{12}{40}$ are equivalent.

(ii)
$$\frac{5}{8}$$
, $\frac{30}{48}$
= $5 \times 48 = 240$
= $30 \times 8 = 240$
 $240 = 240$

.. The given fractions $\frac{5}{8}$ and $\frac{30}{48}$ are equivalent.

(iii)
$$\frac{4}{6}$$
, $\frac{30}{20}$
= $4 \times 20 = 80$
= $6 \times 30 = 180$
 $80 \neq 180$

.. The given fractions $\frac{4}{6}$ and $\frac{30}{20}$ are not equivalent.

(iv)
$$\frac{7}{13}$$
, $\frac{5}{11}$
= $7 \times 11 = 77$
= $5 \times 13 = 65$
 $77 \neq 65$

.. The given fractions $\frac{7}{13}$ and $\frac{5}{11}$ are not equivalent.

Question 10.

Reduce the following fractions to simplest form:

(i)
$$\frac{12}{27}$$

(ii)
$$\frac{150}{350}$$

(iii)
$$\frac{18}{81}$$
.

(iv)
$$\frac{276}{115}$$

Solution:

(i)
$$\frac{12}{27} = \frac{12 \div 3}{27 \div 3} = \frac{4}{9}$$

(ii)
$$\frac{150}{350} = \frac{150 \div 50}{350 \div 50} = \frac{3}{7}$$

(iii)
$$\frac{18}{81} = \frac{18 \div 9}{81 \div 9} = \frac{2}{9}$$

$$(iv) \ \frac{276}{115} = \frac{276 \div 23}{115 \div 23} = \frac{12}{5}$$

Question 11.

Convert the following fractions into equivalent like fractions:

(i)
$$\frac{7}{8}, \frac{5}{14}$$

(ii)
$$\frac{5}{6}, \frac{7}{16}$$

(iii)
$$\frac{3}{4}$$
, $\frac{5}{6}$, $\frac{7}{8}$

Solution:

(i)
$$\frac{7}{8}$$
, $\frac{5}{14}$

The LCM of 8 and 14

$$=2\times2\times2\times7=56$$

To write $\frac{7}{8}$ with denominator 56, multiply the numerator and denominator by 7

$$=\frac{7\times7}{8\times7}=\frac{49}{56}$$

Similarly,
$$\frac{5}{14} = \frac{5 \times 4}{14 \times 4} = \frac{20}{56}$$

Thus,
$$\frac{7}{8}$$
, $\frac{5}{14}$ can be written as $\frac{49}{56}$ and

$$\frac{20}{56}$$
 respectively which are equivalent like fractions.

(ii)
$$\frac{5}{6}$$
, $\frac{7}{16}$

The LCM of 6 and 16

$$= 2 \times 2 \times 2 \times 2 \times 3 = 48$$

To write $\frac{5}{6}$ with denominator 48, multiply the numerator and denominator by 8

$$=\frac{5\times8}{6\times8}=\frac{40}{48}$$

Similarly,
$$\frac{7}{16} \Rightarrow \frac{7 \times 3}{16 \times 3} = \frac{21}{48}$$

Thus $\frac{5}{6}$, $\frac{7}{16}$ can be written as $\frac{40}{48}$, $\frac{21}{48}$ respectively with equivalent like fractions.

(iii)
$$\frac{3}{4}$$
, $\frac{5}{6}$, $\frac{7}{8}$

The LCM of 4, 6 and 8

$$= 2 \times 2 \times 2 \times 3 = 24$$

To write $\frac{3}{4}$ with denominator = 24 we need to multiply numerator and denominator by 6

$$=\frac{3}{4}\times\frac{6}{6}=\frac{18}{24}$$

Similarly $\frac{5}{6}$ and $\frac{7}{8}$ can be written as

$$\frac{5}{6} \times \frac{4}{4} = \frac{20}{24}$$
 and $\frac{7}{8} \times \frac{3}{3} = \frac{21}{24}$

Hence, $\frac{3}{4}$, $\frac{5}{6}$, $\frac{7}{8}$ can be written as $\frac{18}{24}$,

$$\frac{20}{24}$$
, $\frac{21}{24}$ respectively.

Which are equivalent like terms.