Class- X, Computer Applications

Lesson -8

Control Flow and Decision Making in Java

Java is a structured programming language and Java
program statements can be executed sequentially,
conditionally (with the help of if-else, and switch),
iteratively (with the help of loops) or by following a
combination of all depending upon the program logic.
Conditional and iterative execution of program state-
ments is done by control flow statements. Conditional
statements in Java include if, else, switchand case
statements, while iterative statements

include for(), while(), and do...while() statements.

Decision Making in Java

To facilitate conditional control flow in Java there

are relational and logical operators to form a
conditional expression that returns either true or false.
Words true and falselook like keywords but they

are boolean literals actually and cannot be used as
identifiers in Java programs. Java program decides
the execution path on basis of the truth or falsehood
of conditional expression.

Java Statements and Blocks

In a Java program zero or more statements
enclosed in a pair of curly braces({ }) make a block
of statements. A block is treated as a single unit and
can be used where a single statement is allowed. In
fact, ablock is a statement but this is a compound
statement. We will soon come to know the worth of
a block when we will have to control more than one
statement by decision making constructs of Java.

Java If Statement

An if statement is the most basic Java control flow
statement you will see in Java programs along with
an optional else part. Following is the general syntax
of ifstatement:

if (booleanExpression)
statement-1,

OR

if (booleanExpression)

{

statement-1;
statement-2;
.. . Statement-n;

}

The booleanExpression in parentheses must return a

boolean true or false or Boolean (boolean wrapper).
The expression can be a relational or logical expres-
sion or a function call that returns a boolean literal.
Above syntax will execute statement-1 to statement-

n if the booleanExpression in parentheses returns true,
nothing otherwise.

By default if controls only one statement, therefore if
you wish to control only one statement by if, you need
not to enclose the only statement within curly braces.
But, it is good to use braces every time with ifbecause
it increases readability of the program. If there are two
or more statements to be controlled by ifconditional,
they all must be enclosed in curly braces. A set of
statements enclosed in braces is called a block or

a compound statement. For demonstration, consider
the following example program:

//Demonstrates if-else statement
public class ControlFlowDemo

{

public static void main(String[] args)
{

intx =10,y = 20;

boolean decision = false; //if controls one statement
by default, so no braces required

if(x <y)

System.out.printin(x + " is less than " + y + "\n");

if (decision==true)

System.out.printin("always false\n");

//will never be printed

if (isPositive(x)==true)

System.out.printin(x + " is positive: " + isPositive(x) +
"\n");

if (x>y)

{

System.out.printin("Within from if block");
System.out.printin(x + " greater than " + y + "\n");

}

else

{

System.out.printin("Within from else block");
System.out.printin("Optional else used when there are
two branches"); System.out.printin(x + " less than " +y
+"\n");

}

//will print "yes, variable decision is false" if (decision
== false) System.out.printin("Yes, variable decision is
false\n");

//what do you think it will print?

if (decision = true) System.out.printin("Variable
decision is assigned to true");

} // number is positive if it is greater than zero

public static boolean isPositive (int n1)

{

return (n1 >-1);

}

}
OUTPUT ======10is lessthan 20 10 is positive:

true Within from else block Optional else used when

there are two branches 10 less than 20 Yes, variable
decision is false Variable decision is assigned to true

In above example code, look at the

second if statement if (decision), where

variable decision returns false, therefore the

statement System.out.printin("always false\n"); will not
be executed and nothing will be printed.

Next, in if (decision == false) statement,

variable decision is being checked for

equality against boolean literal false. As

variable decision contains false so it will pass the
equality test and will return true.

Finally, in the last most if statement decision = true is
not a valid relational or logical expression, while itis a
mere assignment operation and boolean literal true is
being assigned to variable decision. But, still there is
no error and code is executed successfully because
this is eventually evaluated to true.

Java Nested If Statement

When an if statement appears inside the other

it is called nesting of if statements. Nesting

of if statements is very helpful when you have
something to do by following more than one decision.
For example, if you meet your daughter's school
teacher every second Saturday of the month to get to

know the performance of your doll then your meeting
is followed by two decisions. First, it should be a
Saturday then it should be the second of the month.
And more practically, the third one is that it should not
be a holiday. Let's program your meeting schedule as
follows:

boolean isSat = true; int whichSat = 2; boolean
isHoliday = false;
if (isSat==true)

{
if (whichSat == 2)
{
if (isHoliday == false)
{
System.out.printin("It is meeting today.");
}
}
}
else
{
System.out.printin("No meeting today.");
}

While nesting if statements we must know that
an else statement is always bound to its closest if.
Following piece of code demonstrates that:

inti=10,j=15k=50,a=5b=7¢c=9,d=11;
if(i == 10)

if(j < 20)
a=Db;
if(k > 100)
c=d;
else
a = c; // associated with if(k > 100)
}
else

a = d; // associated with if(i == 10)
System.out.printin(a);

OUTPUT ======9

Java If-else if Ladder

Java control flow statements are executed from

top to down, therefore, a ladder of if-else conditions
will be evaluated from top to down. As soon as

an if statement from the ladder evaluates to true, the
statements associated with that if are executed, and
the remaining part of the ladder is bypassed. The last
most else is executed only when no condition in the
whole ladder returns true.

Here is a program which demonstrates if-else ladder. It
determines if a given alphabet is vowel or consonant.

//Demonstrates if-else ladder
public class ControlFlowDemo

{

public static void main()

{

char ch =0}

if (ch =="a'|| ch =="A") System.out.printin(ch + " is
vowel.");

else if (ch =="e'|| ch =="E") System.out.printin(ch + " is
vowel.);

else if (ch =="i'|| ch =="I') System.out.printin(ch + " is
vowel.");

else if (ch =="0"|| ch =='0") System.out.printin(ch + " is
vowel.");

else if (ch =="u' || ch =="U") System.out.printin(ch + " is
vowel.");

else

System.out.printin(ch + " is a consonant.”);

}
}

OUTPUT ====== 0 is vowel.

In above program, one and only one printlnstatement
will be executed, no matter what is the value
of ch from a-z or A-Z.

switch....case

A switch statement allows a variable to be tested for
equality against a list of values. Each value is called a
case, and the variable being switched on is checked

for each case.

switch case statement is generally used for writing
menu driven programs or for users choice programs.
It's execution is faster than if...else if...else ladder.
Write the differences between if... else and switch
statements.

Syntax

The syntax of enhanced for loop is -

switch(expression)
{
case value:
// Statements
break; // optional
case value:
// Statements
break; // optional

// You can have any number of case statements.
default : // Optional
// Statements

}

The following rules apply to a switch statement -
(] Duplicate case values are not allowed.

[J The variable used in a switch statement can only
be integers, convertable integers (byte, short, char),

strings and enumes.

Beginning with JDK7, it also works with
enumerated types (Enums in java), the String class
and Wrapperclasses.

[J You can have any number of case statements
within a switch. Each case is followed by the value
to be compared to and a colon.

[J The value for a case must be the same data type as
the variable in the switch and it must be a constant
or a literal.

[J When the variable being switched on is equal to
a case, the statements following that case will
execute until a break statement is reached.

(] When a break statement is reached, the switch
terminates, and the flow of control jumps to the
next line following the switch statement.The break
statement is used inside the switch to terminate
a statement sequence. That's why it is also called
case terminator.

[J Not every case needs to contain a break.

[A switch statement can have an optional default
case, which must appear at the end of the switch.
The default case can be used for performing a task

when none of the cases is true. No break is needed
in the default case.

Flow Diagram

expression

case 1

code block 2

case 2

case 3 code block 3

o,
b
"
i S

default

code block M

Example 1:

public class Test

{

public static void main(String args|])
{
// char grade =args|[0].charAt(0); char grade =
ICI;
switch(grade)
{
case 'A': System.out.printIn("Excellent!");
break;
case B':
case C':
System.out.printin("Well done");
break;
case D':
System.out.printIn("You passed");
case F':
System.out.printin("Better try again");
break;
default :
System.out.printIn("Invalid grade");
}
System.out.printin("Your grade is " + grade);
}
}

Compile and run the above program using various
command line arguments. This will produce the

following result -

Output
Well done Your grade is C

Example 2:

// Java program to demonstrate switch
// case with multiple cases and

// break statements

public class Test

{

public static void main(String[] args)

{

int day = 2,
String dayType;
String dayString;
switch (day)

{

case 1:
dayString = "Monday";
break;

case 2:

dayString = "Tuesday’;

-

break;

case 3:
dayString = "Wednesday",;
break;

case 4:
dayString = "Thursday”;
break;

case 5.
dayString = "Friday";
break;

case 6:
dayString = "Saturday”,
break;

case /:

dayString = "Sunday’;

break;
default;
dayString = "Invalid day";

}
System.out.printin(dayString);

}

Output :
Tuesday

Example 3:

// Java program to demonstrate switch
// case with multiple cases without

// break statements

public class ExampleOfFallthrough

{

public static void main()

{
int day = 2;
String dayType;

switch (day)
{

// multiple cases without break
//statement
case 1:
case 2:
case 3:
case 4:
case 5.
dayType = "Weekday",
break;
case 6:
case /:
dayType = "Weekend",
break;
}

System.out.printin(day + "day is a " + dayString +".");
}

Output:

2 day is a Weekday

Nested Switch Case statements

We can use a switch as part of the statement
sequence of an outer switch. This is called a nested
switch. Since a switch statement defines its own
block, no conflicts arise between the case constants
in the inner switch and those in the outer switch. For
example:

// Java program to demonstrate
// nested switch case statement

public class Test

{

public static void main()

{

String Branch = "CSE";

int year = 2;
switch (year)

{

case 1:

System.out.printin("elective courses : Advance

english, Algebra");
break;
case 2:

switch (Branch) // nested switch

{

case "CSE":
case "CCE":

System.out.printIn("elective courses : Machine
Learning, Big Data");

break;
case "ECE":

System.out.printIn("elective courses : Antenna
Engineering");

break;
default:
System.out.printIn("Elective courses :
Optimization");

} //end of nested switch
default :
System.out.printin("Year must be 1 or 2 only......");

} // end of outer switch

}

}
Output:

elective courses : Machine Learning, Big Data

Exercise programs

With each program write comments and Variable
Description

Q17

class Numbers

{

public static void main()
{

int sum=0;
System.out.printin(" Numbers divisible by 17 are:");
for(int i=1;i<=1000;i++)

{

if(1%17==0)

{

System.out.printin(i);
sum=sum-i;

}

}

}

System.out.printIn("Sum of the numbers which are
divisible by 17 is :" + sum);

}

}

Variable Description
Name Data Type Description

sum int to store the sum
of the numbers
divisible by17
i int control variable of
for() loop
Q(18)
import java.util.Scanner,
class Digits
{
public static void main()
{
Scanner sc= new Scanner(System.in);
int n=0;

System.out.printin(" Enter a number ");
n=sc nextint();
if(n>=10 && n<=99)
System.out.printin(n+" is a two digits number. ");
else if(n>=100 && n<=999)
System.out.printin(n+" is a three
digits number. ");
else if(n>=1000 && n<=9999)
System.out.printin(n+" is a four
digits number. ");

}
}

Q20
import java.util.Scanner;
class DescendingNumbers

{

public static void main()
{
Scanner sc= new Scanner(System.in);
int a=0,b=0,c=0;
System.out.printin(" Enter three number");
a=sc nextint();
b=sc nextint();
c=sc nextInt();
System.out.printin(" The numbers in descending order
are:");
if(a>b)
{
if(a>c)
{
if(b>c)
System.out.printin(a+" '+b+" '+c);
else
System.out.printin(a+" '+c+" ,'+b);
}

else
System.out.printin(c+" '+a+" '+b);

}

else

{
if(b>c)

{
if(a>c)
System.out.printin(b+" '+a+" '+c);
else
System.out.printin(b+" '+c+" /'+a);
}
else
System.out.printin(c+" '+b+" '+a);

)

Q (22)
public class MonthName

{

public static void main(int month)

{
String mString;
switch (month)
{
case 1:
mString = "January”;
break;
case 2:
mString = "February”,
break;
case 3:
mString = "March’;
break;

case 4:
mString = "April’;
break;
case 3.
mString = "May",
break;
case 6:
mString = "June’;
break;
case /:
mString =" July”;
break;
case 8:
mString =" August’;
break;
case 9:
mString =" September”;
break;
case 10:
mString =" October”;
break;
case 11:
mString ="November?;
break;
case 12:
mString = "December *;
break;
default:
mString = "Invalid month........ ;

System.out.printin(mString);
}

Q24
import java.util.Scanner;
class CityName

{

public static void main()
{
Scanner sc= new Scanner(System.in);
char ch=0;

System.out.printIn(" Enter city character as : \n Delhi -
D\n Mumbai - M \n Kolkata - K\n Chennai-C");
System.out.printin(" Enter your choice D/M /K / C:");
ch=sc.next().charAt(0);
switch(ch)
{
case D':
System.out.printin(" Delhi");
break;
case M':
System.out.printin(" Mumbai");
break;
case 'K':
System.out.printin(" Kolkata");
break;
case C':
System.out.printin(" Chennai");
break;

default :
System.out.printIn(" Wrong choice...");

}
}
}

Q30
import java.util.Scanner;
class ElectricityBill

{

public static void main()
{
Scanner sc= new Scanner(System.in);
int units=0;
float bill=0.0f;
System.out.printin(" Enter the total number of
units ");
units=sc nextInt();
if(units>=1 && units<=100)
bill=unitsx.80f;
else if(units>=101 && units<=300)
bill=(100x.80f) +((units-100)x1);
else if(units>300)
bill=(100x.80f) + (200x1)+((units-300)x2.50f);
bill=bill+500;
System.out.printIn("Units are : "+units);
System.out.printin("Bill is : "+ bill);

}
}

Q31
import java.util.Scanner;
class CheckNumber

{

public static void main()
{
Scanner sc= new Scanner(System.in);
int ch=0,num=0;
System.out.printin(" (1) Automorphic number \(2)
Buzz number");
System.out.printin(" Enter your choice 1/2");
ch=sc.nextInt();
System.out.printin(" Enter a number");
num= sc.nextInt();

switch(ch)
{
case 1:
int c=0,rem=0, s=0;
S=num X num;
int t=num;
while(t>0)
{
c++; // counting the digits in no.
t=t/10;
}
rem=s%(int)Math.pow(10,c);
if(rem==num)
System.out.printin(num + " is an Automorphic

no.");
else
System.out.printin(num + " is NOT an
Automorphic no.");
break;
case 2.
if(num%10==7 || num%7==0)
System.out.printin(num + " is a BUZZ no.");
else
System.out.printin(num + " is NOT a BUZZ no.");
break;
default:
System.out.printin(" Wrong choice.... ");

}
}
}

Q35
import java.util.Scanner;
class TotalAmount

{

public static void main()
{
Scanner sc= new Scanner(System.in);
int dis=0;
float tamt=0.0f, cost=0f;
char ch=0;
System.out.printIn(" Enter the item code as : \n Laptop-
L\n LCD - D \n XBox - X \n Printer - P");
ch=sc.next().charAt(0);

System.out.printin(" Enter the cost of the item");
cost=sc.nextFloat();
if (ch==L)
dis=5;
else if(ch=='D")
dis=7;
else if(ch=="X)
dis=10;
else if(ch=="'P)
dis=11;
else
System.out.printin(" Wrong item code");
dis=costxdis/100f;
tamt=cost-dis;
System.out.printin("Cost of the item is :"+ cost);
System.out.printin("ltem code is :"+ ch);
System.out.printIn("Discount amount is :"+ dis);
System.out.printin("Payable amount after getting
discount is:"+ tamt);

}
}

Q37
import java.util.Scanner;
class ClothDiscount

{

public static void main()

{

Scanner sc= new Scanner(System.in);

float len=0.0f, dis=0f tamt=0f, paidAmt=0f;;

char ch=0;
System.out.printin(" Enter D - Dealer\n R - Retailer");
System.out.printin("Enter your choice (D/R) :");
ch=sc.next().charAt(0);
System.out.printin("Enter the length of the cloth :");
len=sc.nextFloat();
System.out.printIn("Enter the total amount of purchase
);

tamt=sc.nextFloat();

switch(ch)

{

case D':

if(len>=1 && len<=1000)
dis=20;

else if(len>1000 && len<=2000)
dis=25;

else if(len>2000)
dis=35;

dis=tamtxdis/100;

paidAmt=tamt-dis;

break;

case R:

if(len>=1 && len<=1000)
dis=15;

else if(len>1000 && len<=2000)
dis=20;

else if(len>2000)

dis=25;
dis=tamtxdis/100;
paidAmt=tamt-dis;
break;
default:
System.out.printin(" Wrong customer type....");
}
// output
System.out.printIn("Type is customer is :"+ch);
System.out.printin("Length of the cloth is :"+len);
System.out.printin("Discount is :"+dis);
System.out.printin("Amount to be paid after
calculating the discount : "+paidAmt):

}
}

Q(38)
import java.util.Scanner;
class MoneyConversion

{

public static void main()

{

Scanner sc= new Scanner(System.in);
int ch=0,rs=0, dollar=0;

System.out.printin("****** MENU *****x"),
System.out.printin(" (1) Rupees into Dollar number \(2)
Dollar into Ruprrs");

System.out.printIn(" Enter your choice 1/2");
ch=sc.nextInt();

switch(ch)
{

case 1:
System.out.printIn(" Enter rupees :");
rs= sc.nextInt();
dollar=rs/77;
System.out.printin(" Rupees are : "+rs);
System.out.printIn(" After conversion
Dollars are :"+dollar);
break;

case 2:

System.out.printin(" Enter dollars :");
dollar= sc.nextInt();

rs=dollarx77;

System.out.printin(" Dollars are : "+dollar);
System.out.printin(" After conversion
Rupees are :"+rs);

break;

default:
System.out.printin(" Wrong choice....");

}
}
}

