Question 1.

Draw a line segment \overline{PQ} =5.6 cm. Draw a perpendicular to it from a point A outside \overline{PQ} by using ruler and compass.

Solution:

Given: A–Line segment PQ = 5.6 cm and a point A outside the line.

Required: To draw a 1 ar to PQ from point A. Steps of construction :

- (i) With A as centre and any suitable radius, drawn an arc to cut the line PQ at points C and D.
- (ii) With C and D as centres, drawn two arcs of equal radius (> $\frac{1}{2}$ CD)

cutting each other at B on the other side of PQ.

(iii) Join A and B to meet the line PQ at N, then AN is the required perpendicular from the point A to the line PQ.

Question 2.

Draw a line segment \overline{AB} = 6.2 cm. Draw a perpendicular to it at a point M on \overline{AB} by using ruler and compass.

Solution:

Given: A line AB = 6.2 cm and a point P on it.

Required: To draw an \bot arc to AB at point P.

Step of Construction:

- (i) With P as centre and any suitable radius, draw an arc to cut the line AB at points C and D.
- (ii) With C and D as centres, draw two arcs of equal radius $(>\frac{1}{2}{\rm CD})$ cutting each other at Q.
- (iii) Join P and Q.
 then QP is the required perpendicular to the line AB at the point P.

Question 3.

Draw a line I and take a point P on it. Through P, draw a line segment \overline{PQ} perpendicular to I. Now draw a perpendicular to \overline{PQ} at Q (use ruler and compass). Solution:

Steps of construction:

- (i) Let AB be the given line segment.
- (ii) With A as centre and any suitable radius $(> \frac{1}{2}CD)$ draw arcs on each side of AB.
- (iii) With B as centre and same radius [as in step (i)], draw arcs on each side of AB to cut the previous arcs at P and Q.
- (iv) Draw a line passing through points P and Q, then the lines \overline{PQ} is the required perpendicular bisector of AB and line I.

Question 4.

Draw a line segment \overline{AB} of length 6.4 cm and construct its axis of symmetry (use ruler and compass).

Solution:

Steps of construction:

- (i) Draw a line segment \overline{AB} of length 6.4 cm.
- (ii) With A as centre, using a compass, draw a circle. The radius of this circle should be more than half of the length of AB.
- (iii) With the same radius and with B as centre, draw another circle using a compass.

Let it cut the previous circle at C and D.

(iv) Join $\overline{\mathrm{CD}}$. Then, $\overline{\mathrm{CD}}$ is the axis of symmetry of $\overline{\mathrm{AB}}$

Question 5.

Draw the perpendicular bisector of \overline{XY} whose length is 8.3 cm.

- (i) Take any point P on the bisector drawn. Examine whether PX = PY.
- (ii) If M is the mid–point of \overline{XY} , what can you say about the lengths MX and MY? Solution:

Steps of construction:

- (i) Draw a line segment \overline{XY} of length 8.3 cm.
- (ii) With X as centre, using compass, draw a circle. The radius of this circle should be more than half of the length of \overline{XY} .
- (iii) With the same radius and with Y as centre, draw another circle using a compass.

Let it cut the previous circle at A and B.

(iv) Join AB.

Then, \overline{AB} is the perpendicular bisector of the line segment \overline{XY} .

- (a) On examination, we find the PX = PY.
- (b) We can say that the length of MX is Equal to the length of MY.

Question 6.

Draw a line segment of length 8.8 cm. Using ruler and compass, divide it into four equal parts. Verify by actual measurement.

Solution:

Steps of construction:

- (i) Draw a line segment \overline{AB} of length 8.8 cm.
- (ii) With A as centre, using compass, draw two arcs on either side of AB.

The radius of this arc should be more than half of the length of \overline{AB} .

(iii) With the same radius and with B as ctntre, draw another arc using compass.

Let it cut the previous arc at C and D.

(iv) Join $\overline{\mathrm{CD}}$.

It cuts \overline{AB} at E.

Then \overline{CD} is the perpendicular bisector of the line segment \overline{AB} .

- (v) With A as centre, using compass, draw a circle. The radius of this circle stould be more than half of the length of Ac.
- (vi) With the same radius and with E as ceitre, draw another circle using compass.

Let it cut the previous circle at F ana G.

(vii) Join \overline{FG} . It cuts \overline{AE} at H.

Then \overline{FG} is the perpendicular bisector of the line segment $\overline{AE}.$

(viii) With E as centre, using eompass, draw a circle. The radius of thii circle slould be more than half of the length of EB.

(ix) With the same radius md with B is centre, draw another circle using compss.

Let it cut the previous cirde at I and J.

(x) Join $\overline{\mathrm{IJ}}$. It cuts $\overline{\mathrm{EB}}$ at K.

Then \overline{IJ} is the perpendicuir bisector of the lhe segment \overline{EB} .

Now, the points H, E and K divide AB into four equal parts. i. e.,

$$\overline{AH} = \overline{HE} = \overline{EK} = \overline{KB}$$

By measurement,

$$\overline{AH} = \overline{HE} = \overline{EK} = \overline{KB} = 2.2 \text{ cm}$$

Question 7.

With \overline{PQ} of length 5.6 cm as diameter, draw a circle.

Solution:

Steps of construction:

- (i) Draw a line segment \overline{PQ} of length 5.6 cm.
- (ii) With P as centre, using compass, draw a circle. The radius of this circle should be more than half of the length of \overline{PQ} .
- (iii) With the same radius and with Q as centre, draw another circle using compass.

Let it cut the previous circle at A and B.

(iv) Join \overline{AB} . It cuts \overline{PQ} at C.

Then AB is the perpendicular bisector of the line segment \overline{PQ}_{\cdot}

- (v) Place the pointer of the compass at C and open the pencil up to P.
- (vi) Turn the compass slowly to draw the circle.

Question 8.

Draw a circle with centre C and radius 4.2 cm. Draw any chord AB. Construct the perpendicular bisector of AB and examine if it passes through C.

Solution:

Steps of construction:

- (i) Draw a point with a sharp pencil aid mark it as C.
- (ii) Open the compass for the required radius of 4.2 cm,

by putting the pointer on 0 and opening the pencil up to 4.2 cm.

- (iii) Place the pointer of the compass at C.
- (iv) Turn the compass slowly to draw the circle.
- (v) Draw any chord \overline{AB} of this circle.
- (vi) With A as centre, using compass, draw a circle. The radius of this circle should be more than half of the length of \overline{AB} .
- (vii) With the same radius and with B as centre, draw another circle using compass.

Let it cut the previous circle at D and E.

(viii) Join $\overline{\mathrm{DE}}$.

Then \overline{DE} is the perpendicular bisector of the line segment \overline{AB} .

On examination, we find that it passes through C.

Question 9.

Draw a circle of radius 3.5 cm. Draw any two of its (non–parallel) chords. Construct the perpendicular bisectors of these chords. Where do they meet? Solution:

Steps of construction:

- (i) Draw a point with a sharp pencil and mark it as O.
- (ii) Open the compasses for the required radius 3.5 cm,

by putting the pointer on 0 and opening the pencil upto 3.5 cm.

- (iii) Place the pointer of the compass at O.
- (iv) Turn the compass slowly to draw the circle.
- (v) Draw any two chords $\overline{AB}B$ and \overline{CD} of this circle.
- (vi) With A as centre, using compass, draw two arcs on either side of AB.

The radius of this arc should be more than half of the length of $\overline{AB}.$

(vii) With the same radius and with B as centre, draw another two arcs using compass.

Let it cut the previous circle at E and F.

(viii) Join $\overline{\mathrm{EF}}$.

Then $\overline{\mathrm{EF}}$ is the perpendicular bisector of the chord $\overline{\mathrm{AB}}$.

(ix) With C as centre, using compass, draw two arcs on either side of CD.

The radius of this arc should be more than half of the length of $\overline{\mathrm{CD}}$.

(x) With the same radius and with D as centre, draw another two arcs using a compass.

Let it cut the previous circle at G and H.

(xi) Join $\overline{\mathrm{GH}}$.

Then \overline{GH} is the perpendicular bisector of the chord \overline{CD} .

We find that perpendicular bisectots \overline{EF} and \overline{GH} meet at 0,

the centre of the circle.

