Question 1.

Draw an angle of 80° and make a copy of it using ruler and compass.

Solution:

Steps of construction:

- (i) Construct an angle ABC = 80°.
- (ii) Take a line I and mark a point D on it.
- (iii) Fix the compass pointer on B and draw an arc which cuts the sides of ∠ABC at D and F.
- (iv) Without changing the compass setting, place the pointer on P and draw an arc which cuts I at Q.
- (v) Open the compass equal to length DE.
- (vi) Without disturbing the radius on compass, place its pointer at Q and draw an arc which cuts the previous arc at R.
- (vii) Join PR and draw ray PR.

Its gives \angle RPQ which is the required angle whose measure is equal to the measure of \angle ABC.

Question 2.

Draw an angle of measure 127° and construct its bisector.

Solution:

Steps of construction:

- (i) Draw \overline{OQ} of any length.
- (ii) Place the centre of the protractor at O and the zero edge along $\overline{\mathrm{OQ}}$.
- (iii) Start with 0 near Q. Mark point P at 127°.
- (iv) Join \overline{OP} . Then, $\angle POQ = 127^{\circ}$
- (v) With O as centre and using compass,draw an arc that cuts both rays of ∠POQ.Label the points of intersection as P' and Q'.
- (vi) With Q' as centre, draw (in the interior of ∠POQ) an arc whose radius is more than half the length Q'P'.
- (vii) With the same radius and with P' as centre, draw another arc in the interior of \angle POQ. Let the two arcs intersect at R. Then, \overline{OR} is the bisector of \angle POO.

Question 3.

Draw $\angle POQ = 64^{\circ}$. Also draw its line of symmetry. Solution:

Steps of construction:

- (i) Draw a ray $\overline{\mathrm{OQ}}$
- (ii) Place the centre of the protractor at O and the zero edge along $\overline{\rm OQ}$.
- (iii) Start with 0 near Q. Mark point P at 64°.
- (iv) Join \overline{OP} . Then, $\angle POQ = 64^{\circ}$.
- (v) With O as centre and using compass,draw an arc that cuts both rays of ∠POQ.Label the points of intersection as P' and Q'.
- (vi) With Q' as centre, draw (in the interior of $\angle POQ$) an arc whose radius is more than half the length Q'P'.
- (vii) With the same radius and with P' as centre, draw another arc in the interior of \angle POQ.

Let the two arcs intersect at R.

Then, \overline{OR} is the bisector of $\angle POQ$ which is also the line of symmetry of $\angle POQ$ as $\angle POR = \angle ROQ$.

Question 4.

Draw a right angle and construct its bisector.

Solution:

Steps of construction:

- (i) Draw a ray OQ.
- (ii) Place the centre of the protractor at O and the zero edge along $\overline{\rm OQ}_{\rm .}$
- (iii) Start with 0 near Q. Mark point P at 90°.
- (iv) Join \overline{OP} . Then, $\angle POQ = 90^{\circ}$
- (v) With 0 as centre and using compass,draw an arc that cuts both rays of ∠POQ.Label the points of intersection as P' and Q'.
- (vi) With Q' as centre, draw (in the interior of ∠POQ) an arc whose radius is more than half the length Q'P'.
- (vii) With the same radius and with P' as centre, draw another arc in the interior of \angle POQ.

Let the two arcs intersect at R.

Then, \overline{OR} is the bisector of $\angle POQ$.

Question 5.

Draw an angle of 152° and divide it into four equal parts.

Solution:

Steps of construction:

- (i) Draw a ray $\overline{\mathrm{OQ}}$.
- (ii) Place the centre of the protractor at O and the zero edge along $\overline{\mathrm{OQ}}$.
- (iii) Start with 0 near Q. Mark a point P at 152°.
- (iv) Join OP. Then, ∠POQ =152°
- (v) With O as centre and using compass,draw an arc that cuts both rays of ∠POQ.Label the points of intersection as P' and Q'.
- (vi) With Q' as centre, draw (in the interior of ∠POQ) an arc whose radius is more than half the length Q'P'.
- (vii) With the same radius and with P' as centre, draw another arc in the interior of $\angle POQ$. Let the two arcs intersect at R. Then, \overline{OR} is the bisector of $\angle POQ$.

(viii)With O as centre and using compasses,
draw an arc that cuts both rays of ∠ROQ.
Label the points of intersection as B and A.
(ix) With A as centre, draw (in the interior of ∠ROQ)
an arc whose radius is more than half the length AB.

- (x) With the same radius and with B as centre, draw another arc in the interior of $\angle ROQ$. Let the two arcs intersect at S. Then, \overline{OS} is the bisector of $\angle ROQ$.
- (xi) With O as centre and using compass,
 draw an arc that cuts both rays of ∠POR.
 Label the points of intersection as D and C.
 (xii) With C as centre, draw (in the interior of ∠POR)
 an arc whose radius is more than half the length CD.
 (xiii) With the same radius and with D as centre,
 draw another arc in the interior of ∠POR.

Let the two arcs intersect at T.

Then, \overline{OT} is the bisector of $\angle POR$.

Thus, \overline{OS} , \overline{OR} and \overline{OT} divide $\angle POQ = 152^\circ$ into four equal parts.

Question 6.

Draw an angle of measure 45° and bisect it.

Solution:

Steps of construction:

- (i) Draw a straight line BC.
- (ii) With B as a centre and any suitable radius, draw an arc to meet BC at E.
- (iii) With E as centre and same radius draw an arc to meet the previous arc at G.
- (iv) With G and F as centre and same radius draw another arc to meet the first arc at H.
- (v) With H and E as centre draw two arcs of equal radius less than $\frac{1}{2}$ GE.
- (vi) Cutting each other at J joined BJ and produce it to D.
- (vii) With L and E as centre draw two arcs of equal radius less than $\frac{1}{2}$ LE.
- (viii) Cutting each other at K joined BK and produce it to I.
- (ix) Measuring angle ∠IBC = 22.5°

