Question 1.

In the given figure, ABCD is a parallelogram.

Complete each statement along with the definition or property used.

- (i) AD =
- (ii) DC =
- (iii) ∠DCB =
- (iv) ∠ADC =
- (v) ∠DAB =
- (vi) OC =
- (vii) OB =
- (viii) $m \angle DAB + m \angle CDA = \dots$

Solution:

In paralleloram ABCD

- (i) AD = 6 cm (Opposite sides of parallelogram)
- (ii) DC = 9 cm (Opposite sides of parallelogram)
- (iii) \angle DCB = 60° (:: \angle DCB + \angle CBA = 180°)
- (iv) \angle ADC = \angle ABC = 120°
- $(v) \angle DAB = \angle DCB = 60^{\circ}$
- (vi) OC = AO = 7 cm
- (vii) OB = OD = 5 cm
- (viii) $m \angle DAB + m \angle CDA = 180^{\circ}$

Question 2.

Consider the following parallelograms. Find the values of x, y, z in each.

Solution:

(i) ABCD is a parallelogram.

Side BC is produced to E

But
$$\angle$$
DCE + \angle DCB = 180° (Linear pair)

But
$$\angle A = \angle C$$

$$\Rightarrow$$
 x = 60°

$$\angle$$
DCE = \angle ABC (Corresponding angles)

∴
$$y = 120^{\circ}$$

But z = y (Opposite angle of a ||gm)

$$\Rightarrow$$
 z = 120°

Hence $x = 60^{\circ}$, $y = 120^{\circ}$, $z^{\circ} = 120^{\circ}$

(ii) In parallelogram ABCD, diagonals bisect each other at O.

$$\angle$$
DAC = 40°, \angle CAB = 30°, \angle DOC = 100°

$$\angle$$
ACB = \angle DAC = 40° (Alternate angles)

∴
$$z = 40^{\circ}$$

$$\angle$$
ACD = \angle CAB (A Itemate angles)

In ΔOCD,

$$\angle$$
DOC + \angle CDO + \angle OCD = 180° (Angles of a triangle)

$$\Rightarrow$$
 100° + x + 30° = 180°

$$\Rightarrow$$
 x = 180°- 130° = 50°

Ext.
$$\angle$$
COD = y + z

$$100^{\circ} = y + 40^{\circ}$$

$$\Rightarrow$$
 y = 100° - 40° = 60°

$$\therefore$$
 x = 50°, y = 60°, z = 40°

(iii) In parallelogram ABCD, AC is its diagonal.

∠DAB + ∠ABC = 180° (Co-interior angles)

$$\Rightarrow$$
 155°+ z = 180°

$$\Rightarrow$$
 z = 180° - 155° = 25°

But x = z (Alternate angles)

$$\therefore x = 25^{\circ}$$

 $y = \angle B$ (Opposite angles of a ||gm)

 $y = 120^{\circ}$

Hence $x = 25^{\circ}$, $y = 120^{\circ}$, $z = 25^{\circ}$

(iv) In parallelogram ABCD

$$\angle$$
B = 70°, \angle DAC = 67°

$$\angle D = \angle B$$
 (Opposite angles of a ||gm)

$$\Rightarrow$$
 z = 70°

In ∆DAC

Ext. DCE =
$$\angle$$
D + \angle DAC

$$y = z + 67^{\circ}$$

$$y = 70^{\circ} + 67^{\circ} = 137^{\circ}$$

and
$$\angle DCA + \angle DCE = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow$$
 \angle DCA = 180° - 137° = 43°

But \angle CAB = \angle DCA (Alternate angles)

$$\therefore x = 43^{\circ}$$

$$\therefore$$
 x = 43°, y = 137°, z = 70°

Question 3.

Two adjacent sides of a parallelogram are in the ratio 5:7. If the perimeter of parallelogram is 72 cm, find the length of its sides.

Solution:

In ||gm ABCD

$$AD : AB = 5 : 7$$

Perimeter of ||gm = 72 cm

$$\Rightarrow$$
 2(DA + AB) = 72 cm

.. DA + AB =
$$\frac{72}{2}$$
 = 36 cm

Let DA = 5x and AB = 7x

$$5x + 7x = 36$$

$$\Rightarrow$$
 12x = 36

$$\Rightarrow \chi = \frac{36}{12} = 3$$

∴ AB =
$$7x = 7 \times 3 = 21$$
 cm

$$AD = 5x = 5 \times 3 = 15 \text{ cm}$$

Question 4.

The measure of two adjacent angles of a parallelogram are in the ratio 4 : 5. Find the measure of each angle of the parallelogram.

Solution:

In ||gm ABCD

$$\angle A: \angle B = 4:5$$

Let
$$\angle A = 4x$$
, $\angle B = 5x$

But $\angle A + \angle B = 180^{\circ}$ (Cointerior angle)

∴
$$4x + 5x = 180^{\circ} \Rightarrow 9x = 180^{\circ}$$

$$\Rightarrow$$
 x = $\frac{180^{\circ}}{9}$ = 20°

$$\therefore$$
 $\angle A = 4x = 4 \times 20^{\circ} = 80^{\circ}$

$$\angle B = 5x = 5 \times 20^{\circ} = 100^{\circ}$$

But
$$\angle C = \angle A = 80^{\circ}$$
 and $\angle D = \angle B = 100^{\circ}$

(Opposite angles of a ||gm are equal)

Question 5.

Can a quadrilateral ABCD be a parallelogram, give reasons in support of your answer.

(i)
$$\angle A + \angle C = 180^{\circ}$$
?

(ii)
$$AD = BC = 6 \text{ cm}$$
, $AB = 5 \text{ cm}$, $DC = 4.5 \text{ cm}$?

(iii)
$$\angle B = 80^{\circ}, \angle D = 70^{\circ}$$
?

(iv)
$$\angle B + \angle C = 180^{\circ}$$
?

Quadrilateral ABCD can be a parallelogram of opposite sides

are equal and opposite angles are equal.

$$\therefore$$
 \angle A = \angle C and \angle B = \angle D and AB = DC, AD = BC

(i)
$$\angle A + \angle C = 180^{\circ}$$

It may be a parallelogram and may not be.

(iii)
$$\angle B = 80^{\circ}, \angle D = 70^{\circ}$$

But there are opposite angles and $\angle B \neq \angle D$

(iv)
$$\therefore$$
 \angle B + \angle C = 180°

It may be or it may not be.

Question 6.

In the following figures HOPE and ROPE are parallelograms. Find the measures of angles x, y and z. State the properties you use to find them.

(i) In parallelogram HOPE, HO is produced to D

But $\angle AOP = \angle HEP$ (Opposite angles of a ||gm)

$$\Rightarrow$$
 x = 110°

$$\angle$$
HPO = \angle EHP (Alternate angles)

$$\therefore$$
 y = 40°

In
$$\triangle$$
HOP, Ext. \angle POD = y + z

$$\Rightarrow$$
 70° = y + z

$$\Rightarrow$$
 70° = 40° + z

$$\Rightarrow$$
 7 = 70° - 40° = 30°

$$\therefore$$
 x= 110°, y = 40°, z = 30°

(ii) In ||gm ROPE, RO is produced to D

$$\angle$$
POD = 80°, \angle EOP = 60°

$$\angle P = \angle POD$$
 (Alternate angles)

∴
$$y = 80^{\circ}$$

$$\angle$$
ROE + \angle EOP + \angle POD = 180° (Angles on one side

$$x + 60^{\circ} + 80^{\circ} = 180^{\circ} \Rightarrow x + 140^{\circ} = 180^{\circ}$$

$$\therefore x = 180^{\circ} - 140^{\circ} = 40^{\circ}$$

z = x (Alternate angles)

$$\therefore$$
 z = 40°

Hence,
$$x = 40^{\circ}$$
, $y = 80^{\circ}$, $z = 40^{\circ}$

Question 7.

In the given figure TURN and BURN are parallelograms. Find the measures of x and y (lengths are in cm).

Solution:

(i) We know that opposite sides of a parallelogram are equal.

$$4x + 2 = 28 \Rightarrow 4x = 28 - 2$$

$$\Rightarrow$$
 4x = 26

$$\Rightarrow$$
 x = $\frac{26}{4}$ = 6.5 cm

and
$$5y - 1 = 24$$

$$\Rightarrow$$
 5y = 24 + 1

$$\Rightarrow$$
 5y = 25

$$\Rightarrow$$
 y = $\frac{25}{5}$ = 5

∴
$$x = 6.5$$
 cm, $y = 5$ cm

(ii) We know that the diagonal of a parallelogram bisect each other.

$$\Rightarrow$$
 x + y = 20(i)

$$\Rightarrow$$
 x + 3 = 18

$$\Rightarrow$$
 x = 18 - 3 = 15 From (i)

$$15 + y = 20$$

$$\Rightarrow$$
 y = 20 - 15 = 5

$$\therefore$$
 x = 15, y = 5

Question 8.

In the following figure both ABCD and PQRS are parallelograms. Find the value of x.

Solution:

Two parallelograms ABCD and PQRS in which

$$\angle A = 120^{\circ}$$
 and $\angle R = 50^{\circ}$

$$\angle A + \angle B = 180^{\circ}$$
 (Co-interior angles)

$$\Rightarrow \angle B = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle P = \angle R$$
 (Opposite angles of a ||gm)

$$\angle P = 50^{\circ}$$

Now in $\triangle OPB$,

$$\angle POB + \angle P + \angle B = 180^{\circ}$$
 (Angles of a triangle)

$$x + 50^{\circ} + 60^{\circ} = 180^{\circ}$$

$$x + 110^{\circ} = 180^{\circ} \Rightarrow x = 180^{\circ} - 110^{\circ} = 70^{\circ}$$

$$\therefore x = 70^{\circ}$$

Question 9.

In the given figure, ABCD, is a parallelogram and diagonals intersect at O. Find :

- (i) ∠CAD
- (ii) ∠ACD
- (iii) ∠ADC

Solution:

(i) \angle DBC = \angle BDA = 46° (alternate angles)

In Δ AOD,

$$46^{\circ} + 68^{\circ} + \angle CAD = 180^{\circ} (:: \angle CAD = \angle OAD)$$

$$\angle$$
CAD = 180°- 114° = 66°

(ii) $\angle AOD + \angle COD = 180^{\circ}$ (straight angle)

In \triangle COD, 112° + 30° + \angle ACD = 180° (\because \angle ACD = \angle OCD)

$$\angle$$
ACD = 180° - 112° - 30° = 38°

Question 10.

In the given figure, ABCD is a parallelogram.

Perpendiculars DN and BP are drawn on diagonal AC.

Prove that:

- (i) $\triangle DCN \cong \triangle BAP$
- (ii) AN = CP

In the given figure,

ABCD is a parallelogram AC is it's one diagonal.

BP and DN are perpendiculars on AC.

To prove:

(i) $\triangle DCN \cong \triangle BAP$

(ii) AN = CP

Proof: In \triangle DCN and \triangle BAP

DC=AB (Opposite sides of a ||gm)

 $\angle N = \angle P$ (Each 90°)

 \angle DCN = \angle PAB (Alternate angle)

 \therefore \triangle DCN \cong \triangle BAP (AAS axiom)

 \therefore NC = AP (c.p.c.t.)

Subtracting NP from both sides.

NC - NP = AP - NP

∴ AN = CP

Question 11.

In the given figure, ABC is a triangle. Through A, B and C lines are drawn parallel to BC, CA and AB respectively, which forms a $\triangle PQR$. Show that 2(AB + BC + CA) = PQ + QR + RP.

In the given figure, ABC is a triangle.

Through A, B and C lines are drawn parallel to BC, CA and AB respectively which forms Δ PQR.

To prove:

$$2(AB + BC + CA) = PQ + QR + RP$$

- ∵ BC || PR, AC || RQ
- ∴ ARBC is a ||gm
- ∴ AR = CB(i)

Similarly ABCP is a ||gm

From (i) and (ii),

Similarly we can prove that

$$RQ = 2A$$
 and $PQ = 2AB$

Now perimeter of $\triangle PQR = PQ + QR + RP$

= 2AB + 2AC + 2BC

= 2(AB + BC + CA)

Hence PQ + QR + RP = 2(AB + BC + CA)