Question 1.

Construct a parallelogram ABCD such that AB = 5 cm, BC = 3.2 cm and \angle B 120° .

Solution:

Steps of construction:

- (i) Draw AB = 5 cm
- (ii) At B, Construct angle = 120°
- (iii) With B as centre and 3.2 cm as radius cut off \angle B at C.
- (iv) With C as centre and AB as radius draw an arc.
- (v) With A as centre and 3.2 cm as radius draw an arc which meets the previous arc at D.
- (vi) Join AD and CD.

Then ABCD is required parallelogram

Question 2.

Construct a parallelogram ABCD such that AB = 4.8 cm, BC = 4 cm and diagonal BD = 5.4 cm.

Solution:

- (i) Construct a triangle ABD.
- (ii) With B as centre and 4 cm as radius draw an arc.
- (iii) With Das centre and 4.8 cm as radius, draw an arc which meets the previous arc at C.

- (iv) Join CD, BC and AC
- (v) Then ABCD is the required parallelogram.

Question 3.

Construct a parallelogram ABCD such that BC = 4.5 cm, BD = 4 cm and AC = 5.6 cm.

Solution:

Steps of construction:

(i) Construct a \triangle BOC with BC = 4.5 cm,

BO =
$$\frac{1}{2}$$
 × 4 = 2 cm
and OC = $\frac{1}{2}$ AC = $\frac{1}{2}$ × 5.6 = 2.8 cm

- (∵ Diagonals of ||gm bisect each other)
- (ii) Produce OC to A such that OC = OA
- (iii) Produce BO to D such that OD = OB.
- (iv) Join AD, then ABCD is the required parallelogram.

Question 4.

Construct a parallelogram ABCD such that AC = 6 cm, BD = 4.6 cm and angle between them is 45° . Solution:

- (i) Draw AO = $\frac{1}{2}$ AC = 3 cm and produce AO to C such that OC = OA.
- (ii) At O, construct \angle COP = 45°.

- (iii) From OP, cut OD = $\frac{1}{2}$ BD = $\frac{1}{2}$ × 4·6 cm = 2·3 cm.
- (iv) Produce OD to OB such that OB = OD.
- (v) Join AB, BC, CD and DA, then ABCD is the required to parallelogram.

Question 5.

Construct a rectangle whose adjacent sides are 5.6 cm and 4 cm.

Solution:

- (i) Draw AB = 5.6 cm.
- (ii) At B, construct ∠ABP = 90°
- (iii) From BP, cut off BC = 4 cm.

- (iv) With C as centre and radius = 5.6 cm draw an arc.
- (v) With A as centre and radius = 4 cm,draw an arc to meet the previous arc at D(vi) Join AD and CD. Then ABCD is the required rectangle.

Question 6.

Construct a rectangle such that one side is 5 cm and one diagonal is 6.8 cm.

Solution:

- (i) Draw AB = 5 cm.
- (ii) At A, construct ∠BAP = 90°.
- (iii) With B as centre and radius = 6.8 cm, draw an arc to meet AP at D.
- (iv) With A as centre and radius = 6.8 cm draw an arc.
- (v) With D as centre and radius = 5 cm, draw an arc to meet the previous arc at C.
- (vi) Join BC and CD. Then ABCD is the required rectangle.

Question 7.

Construct a rectangle ABCD such that AB = 4 cm and $\angle BAC = 60^{\circ}$.

Solution:

- (i) Draw AB = 4 cm.
- (ii) At B, draw ∠ABP = 90°
- (iii) At A, construct ∠BAQ = 30°. Let AQ meet BPat D
- (iv) With D as centre and radius = 4 cm draw an arc.
- (v) With A as centre and radius = BD, draw an arc to meet the previous arc at C.
- (vi) Join AC and CD. Then ABCD is the required rectangle.

Question 8.

Construct a rectangle such that one diagonal is 6–6 cm and angle between two diagonals is 120°.

Solution:

Steps of construction:

- (i) Draw AO = $\frac{1}{2}$ AC = ($\frac{1}{2}$ × 6·6) cm and produce AO to C such that OC = OA = 3·3 cm
- (ii) At O, construct ∠COB = 120°
- (iii) From OB, cut off OB = $\frac{1}{2}$ AC = 3.3 cm.
- (iv) Produce BO to D such that OB = OD = 3.3 cm.
- (v) Join AB, BC, CD and DA.

Then ABCD is the required rectangle.

Question 9.

Construct a rhombus whose one side is 5 cm and one angle is 45°

Solution:

- (i) Draw AB = 5 cm.
- (ii) At A, construct ∠BAP = 45°.
- (iii) From AP, cut off AD = 5 cm.
- (iv) With B as centre and radius = 5 cm, draw an arc.
- (v) With D as centre and radius = 5 cm, draw an arc to meet the previous arc at C.
- (vi) Join BC and CD. Then ABCD is the required rhombus.

Question 10.

Construct a rhombus whose one side is 4.5 cm and one diagonal is 5 cm.

Solution:

- (i) Draw AB = 4.5 cm.
- (ii) With A as centre and radius = 4.5 cm, draw an arc.
- (iii) With B as centre and radius = 5 cm, draw an arc to meet the previous arc at D.

- (iv) With B as centre and radius = 4.5 cm, draw an arc.
- (v) With D as centre and radius = 4.5 cm, draw an arc to meet the previous arc at C.
- (vi) Join AD, BC and CD. Then ABCD is the required rhombus.

Question 11.

Construct a rhombus whose diagonals are 6.8 cm and 5.2 cm.

Solution:

- (i) Draw AC = 6.8 cm.
- (ii) Draw 1 bisector PQ of AC to meet it at O.
- (iii) From POQ, cut off OB and OD such that OB = OD = $\frac{1}{2}$ BD = $\frac{1}{2}$ (5·2) cm = 2·6 cm.
- (iv) Join AB, BC, CD and DA. Then ABCD is the required rhombus.

Question 12.

Construct a square whose one side is 4.3 cm.

Solution:

- (i) Draw BC = 4.3 cm.
- (ii) At B, construct ∠CBP = 90°
- (iii) From BP, cut off BA = 4.3 cm.
- (iv) With C as centre and radius = 4.3 cm, draw an arc.
- (v) With A as centre and radius = 4.3 cm, draw an arc to meet the previous arc at D.
- (vi) Join AD and CD. Then ABCD is the required square.

Question 13.

Construct a square whose one diagonal is 6.2 cm.

Solution:

Steps of construction:

- (i) Draw AC = 6.2 cm.
- (ii) Draw \perp bisector PQ of AC to meet it at 0.
- (iii) From POQ, cut off OB = OD = $\frac{1}{2}$ AC = 3·1 cm.
- (iv) Join AB, BC, CD and DA.

Then ABCD is the required square.

