Question 3. Find the length of the tangent drawn to a circle of radius 3 cm, from a point at a distance 5 cm from the centre. Solution: Draw a circle with centre C and radius CT = 3 cm. Let PT be the tangent drawn from point P to a circle with centre C. CP = 5 cm CT = 3 cm (given radius) $$\angle$$ CTP = 90° \because Radius is \bot to tangent From ΔCPT, by Pythagoras theorem, we get $$CP^2 = PT^2 + CT^2$$ $$(5)^2 = PT^2 + 32$$ $$PT^2 = 25 - 9 = 16$$ $$PT = \sqrt{16} = 4$$ Hence, length of tangent = 4 cm Question 4. In the adjoining figure, PT is a tangent to the circle with centre C. Given CP = 20 cm and PT = 16 cm, find the radius of the circle. Solution: We know that, radius is always \perp to longest. i. e., CT ⊥ PT ∴ △CPT is right ∠d △ Where CP = hypotenuse In rt. ΔCPT, by Pythagoras theorem, $$CP^2 = PT^2 + CT^2$$ $$CT^2 = CP^2 - PT^2 = 20^2 - 16^2 = 400 - 256 = 144$$ $$CT = \sqrt{144} = 12 \text{ cm}$$ Hence, radius of circle = 12 cm ## Question 5. In each of the following figure, O is the centre of the circle. Find the size of each lettered angle: ## Solution: - (i) In the figure, AB is the diameter - and O is the centre of the circle \angle CAB = 32°, - \angle ABD = 50°, \angle C = 90° (Angle in the semicircle) - By \angle sum property of \triangle - In \triangle ABC, \angle C + \angle CAB + \angle ABC = 180° - \Rightarrow 90° + \angle CAB + x = 180° - \Rightarrow 32° + x = 180° 90° - \Rightarrow x = 90° 32° - \Rightarrow x = 58° - Similarly in right \triangle ADB - ∠ADB = 90° - By \angle sum property of \triangle - $\angle ABD + \angle D + \angle BAD = 180^{\circ}$ - \Rightarrow 50° + 90° + \angle BAD = 180° - $\Rightarrow \angle y + 140^{\circ} = 180^{\circ}$ - \Rightarrow \angle y = 180° 140° = 40° - $\Rightarrow \angle y = 40^{\circ}$ (ii) In the figure, AC in the diameter of circle with centre O ∵ AD || BC \angle ACB = \angle DAC (Alternate angles) $$\therefore x = 37^{\circ}$$ In $\triangle ABC$, $\angle B = 90^{\circ}$ (Angle in a semicircle) \therefore By \angle sum property of \triangle $$\angle x + \angle y + \angle B = 180^{\circ}$$ $$\Rightarrow$$ 37° + \angle y + 90° = 180° $$\Rightarrow$$ y = 180° - 127° = 53° (iii) In the figure, AC is the diameter of the circle with centre O. $$BA = BC$$ $$\therefore$$ \angle BAC = \angle BCA (\angle s of isosceles \triangle) But \angle ABC = 90° (Angle in a semicircle) In ∆ABC (By \angle sum property of \triangle) $$\angle$$ BAC + \angle ABC + \angle BCA = 180° $$\Rightarrow \angle BAC + \angle BCA = 180^{\circ} - 90^{\circ}$$ $$\Rightarrow$$ x + x = 90° $$\Rightarrow$$ 2x = 90° $$\therefore x = 45^{\circ}$$ (iv) In the figure, AC is the diameter of the centre with centre O, $$\therefore$$ \angle ACB + \angle ACD = 180° (Linear pair) $$\Rightarrow$$ \angle ACB + 180° - 122° = 58° (iv) In the figure, AC is the diameter of the centre with centre O, $$\angle ACD = 122^{\circ}$$ $$\therefore$$ \angle ACB + \angle ACD = 180° (Linear pair) $$\Rightarrow$$ \angle ACB + 180° - 122° = 58° In \triangle ABC, \angle ABC = 90° (Angle in a semicircle) \therefore By angle sum prop, of \triangle $$\angle$$ ABC + \angle BCA + \angle ACB = 180° $$90^{\circ} + 58^{\circ} + x = 180^{\circ}$$ $$x = 180^{\circ} - 148^{\circ} = 32^{\circ}$$ (v) In the figures, AC is the diameter of the circle with centre O, OD || CB and ∠CAB = 40° In ΔABC. \angle B = 90°, (Angle in a semicircle) By \angle sum prop, of \triangle $$\angle$$ BCA + \angle ABC + \angle BAC = 180° $$\angle$$ BCA + \angle CAB + 90° = 180° $$\therefore$$ \angle BCA + \angle CAB = 90° $$\Rightarrow$$ x + 40° = 90° \Rightarrow x = 90° - 40° = 50° $$\therefore x = 50^{\circ}$$ $$\therefore$$ \angle AOD = \angle BCA (corresponding angles) $$\angle AOD = x = 50^{\circ}$$ But $$\angle AOD + \angle DOC = 180^{\circ}$$ (Linear pair) $$\Rightarrow$$ 50°+ y = 180° \Rightarrow y = 180° - 50° = 130° Hence $$x = 50^{\circ}$$ and $y = 130^{\circ}$ (vi) In the figure, AC is the diameter of the circle with centre O BA = BC = CD In ΔABC, ∠ABC = 90° (Angle in a semicircle) By \angle sum prop, of \triangle \angle BAC + \angle BCA + \angle ABC = 180° \angle BAC + \angle BCA + 90° = 180° \therefore \angle BAC + \angle BCA = 90° But BA = BC (given) \therefore \angle BAC = \angle BCA = x $\therefore x + x = 90^{\circ}$ $2x = 90^{\circ}$ $\therefore x = 45^{\circ}$ In ΔBCD, BC = CD \therefore \angle CBD = \angle CDB = y and ext. ∠ACB = Sum of interior opposite angles ∠CBD + ∠CDB x = y + y = 2y ∴ $2y = 45^{\circ}$ $y = \frac{45^{\circ}}{2} = 22.5^{\circ} \text{ or } 22\frac{1}{2}^{\circ}$ (vii) In the figure, AB is the diameter of circle with centre O. ST is the tangent at B \angle ASB = 65° In ΔABS \because TS is the tangent and OB is the radius OB \perp ST or \angle ABS = 90° But in ∆ASB $$\angle$$ BAC + \angle ASB + \angle ABS = 180° (Angles of a triangle) x + 65° + 90° = 180° $$\Rightarrow$$ x° + 155° = 180° \Rightarrow x = 180° - 155° = 25° Hence $x = 25^{\circ}$ (viii)In the figure, AB is the diameter of the circle with centre O. ST is the tangent to the circle at B. - : ST is the tangent and OB is the radius - \therefore OB \perp ST or \angle OBS = 90° - ∴ In ∆ABS, $$\angle$$ BAS + \angle BSA + \angle ABS = 180° [By \angle sum property of \triangle] $$\Rightarrow$$ \angle BAS + \angle BSA + 90° = 180° $$\angle$$ BAS + \angle BSA = 90° \Rightarrow x + y = 90° $$\therefore x = y = \frac{90^{\circ}}{2} = 45^{\circ}$$ (ix) In the figure, RS is the diameter of the circle with centre O. SR is produced to Q. QT is tangent to the circle at P OP is joined. QPT is tangent and OP is the radius of the circle $$\angle OPQ = 90^{\circ}$$ ∴ Now in ∆OPQ By \angle sum prop, of \triangle $$\angle$$ OQP + \angle POQ + \angle OPQ = 180° $$\angle OQP + \angle POQ + 90^{\circ} = 180^{\circ}$$ $$\therefore$$ \angle OQP + \angle POQ = 90° $$\Rightarrow$$ 36° + x = 90° \Rightarrow x = 90° - 36° = 54° In \triangle OPS, OP = OS (Radii of the circle) $$\therefore$$ \angle OPS = \angle OSP = y and Ext. $$\angle POQ = \angle OPS + \angle OSP$$ $$= y + y = 2y$$ $$\Rightarrow$$ 2y = x = 54° ## Question 6. In each of the following figures, O is the j centre of the circle. Find the values of x and y. Solution: (i) O is the centre of the circle ∠ABC = 90° (Angles in a semicircle) By Pythagoras Theorem, $$AC^2 = AB^2 + AC^2$$ $$= (15)^2 + (8)^2 = 225 + 64$$ $$= 289 = (17)^2$$ $$\therefore$$ x = 17 cm $$\therefore y = \frac{1}{2}$$ (: AC is the diameter and AO is the radius of the circle) $$=\frac{1}{2}\times 17=\frac{17}{2}$$ cm = 8.5 cm (ii) O is the centre of the circle. PT and PS are the tangents to the circle from P. OS and OT are the radii of the circle $$\therefore$$ \angle OSP = \angle OTP = 90° Now in right $\triangle OPT$ (By Pythagoras Theorem) $$OP^2 = OT^2 + PT^2 = (5)^2 + (12)^2$$ $$= 25 + 144 = 169 = (13)^{2}$$ $$\therefore$$ OP = 13 cm \Rightarrow x = 13cm $$\therefore$$ y = 12 cm (iii) O is the centre of the circle OT_1 is the radius, From P, PT_1 and PT_2 are the tangents. $$OT_1 = 24 \text{ cm } PT_1 = 18 \text{ cm}$$ \because OT, is the radius and PT₁ is the tangent $$\therefore$$ OT₁ \perp PT₁ Now in right $\triangle OPT$, (By Pythagoras Theorem) $$OP^2 = OT_1^2 + PT_1^2 = (24)^2 + (18)^2$$ $$= 576 + 324 = 900 = (30)^{2}$$ $$\Rightarrow$$ x = 30 cm $:: PT_1 \text{ and } PT_2 \text{ are the tangents from } P$ $$\therefore$$ PT₂ = PT₁ = 18 cm $$\Rightarrow$$ y = 18 cm