

Question 3.

Find the length of the tangent drawn to a circle of radius 3 cm, from a point at a distance 5 cm from the centre.

Solution:

Draw a circle with centre C and radius CT = 3 cm.

Let PT be the tangent drawn from point P to a circle with centre C.

CP = 5 cm

CT = 3 cm (given radius)

$$\angle$$
CTP = 90°

 \because Radius is \bot to tangent

From ΔCPT,

by Pythagoras theorem, we get

$$CP^2 = PT^2 + CT^2$$

$$(5)^2 = PT^2 + 32$$

$$PT^2 = 25 - 9 = 16$$

$$PT = \sqrt{16} = 4$$

Hence, length of tangent = 4 cm

Question 4.

In the adjoining figure, PT is a tangent to the circle with centre C. Given CP = 20 cm and PT = 16 cm, find the radius of the circle.

Solution:

We know that, radius is always \perp to longest.

i. e., CT ⊥ PT

∴ △CPT is right ∠d △

Where CP = hypotenuse

In rt. ΔCPT, by Pythagoras theorem,

$$CP^2 = PT^2 + CT^2$$

$$CT^2 = CP^2 - PT^2 = 20^2 - 16^2 = 400 - 256 = 144$$

$$CT = \sqrt{144} = 12 \text{ cm}$$

Hence, radius of circle = 12 cm

Question 5.

In each of the following figure, O is the centre of the circle. Find the size of each lettered angle:

Solution:

- (i) In the figure, AB is the diameter
- and O is the centre of the circle \angle CAB = 32°,
- \angle ABD = 50°, \angle C = 90° (Angle in the semicircle)
- By \angle sum property of \triangle
- In \triangle ABC, \angle C + \angle CAB + \angle ABC = 180°
- \Rightarrow 90° + \angle CAB + x = 180°
- \Rightarrow 32° + x = 180° 90°
- \Rightarrow x = 90° 32°
- \Rightarrow x = 58°
- Similarly in right \triangle ADB
- ∠ADB = 90°
- By \angle sum property of \triangle
- $\angle ABD + \angle D + \angle BAD = 180^{\circ}$
- \Rightarrow 50° + 90° + \angle BAD = 180°
- $\Rightarrow \angle y + 140^{\circ} = 180^{\circ}$
- \Rightarrow \angle y = 180° 140° = 40°
- $\Rightarrow \angle y = 40^{\circ}$

(ii) In the figure,

AC in the diameter of circle with centre O

∵ AD || BC

 \angle ACB = \angle DAC (Alternate angles)

$$\therefore x = 37^{\circ}$$

In $\triangle ABC$, $\angle B = 90^{\circ}$ (Angle in a semicircle)

 \therefore By \angle sum property of \triangle

$$\angle x + \angle y + \angle B = 180^{\circ}$$

$$\Rightarrow$$
 37° + \angle y + 90° = 180°

$$\Rightarrow$$
 y = 180° - 127° = 53°

(iii) In the figure,

AC is the diameter of the circle with centre O.

$$BA = BC$$

$$\therefore$$
 \angle BAC = \angle BCA (\angle s of isosceles \triangle)

But \angle ABC = 90° (Angle in a semicircle)

In ∆ABC

(By \angle sum property of \triangle)

$$\angle$$
BAC + \angle ABC + \angle BCA = 180°

$$\Rightarrow \angle BAC + \angle BCA = 180^{\circ} - 90^{\circ}$$

$$\Rightarrow$$
 x + x = 90°

$$\Rightarrow$$
 2x = 90°

$$\therefore x = 45^{\circ}$$

(iv) In the figure,

AC is the diameter of the centre with centre O,

$$\therefore$$
 \angle ACB + \angle ACD = 180° (Linear pair)

$$\Rightarrow$$
 \angle ACB + 180° - 122° = 58°

(iv) In the figure,

AC is the diameter of the centre with centre O,

$$\angle ACD = 122^{\circ}$$

$$\therefore$$
 \angle ACB + \angle ACD = 180° (Linear pair)

$$\Rightarrow$$
 \angle ACB + 180° - 122° = 58°

In \triangle ABC, \angle ABC = 90° (Angle in a semicircle)

 \therefore By angle sum prop, of \triangle

$$\angle$$
ABC + \angle BCA + \angle ACB = 180°

$$90^{\circ} + 58^{\circ} + x = 180^{\circ}$$

$$x = 180^{\circ} - 148^{\circ} = 32^{\circ}$$

(v) In the figures,

AC is the diameter of the circle with centre O,

OD || CB and ∠CAB = 40°

In ΔABC.

 \angle B = 90°, (Angle in a semicircle)

By \angle sum prop, of \triangle

$$\angle$$
BCA + \angle ABC + \angle BAC = 180°

$$\angle$$
BCA + \angle CAB + 90° = 180°

$$\therefore$$
 \angle BCA + \angle CAB = 90°

$$\Rightarrow$$
 x + 40° = 90° \Rightarrow x = 90° - 40° = 50°

$$\therefore x = 50^{\circ}$$

$$\therefore$$
 \angle AOD = \angle BCA (corresponding angles)

$$\angle AOD = x = 50^{\circ}$$

But
$$\angle AOD + \angle DOC = 180^{\circ}$$
 (Linear pair)

$$\Rightarrow$$
 50°+ y = 180° \Rightarrow y = 180° - 50° = 130°

Hence
$$x = 50^{\circ}$$
 and $y = 130^{\circ}$

(vi) In the figure,

AC is the diameter of the circle with centre O

BA = BC = CD

In ΔABC,

∠ABC = 90° (Angle in a semicircle)

By \angle sum prop, of \triangle

 \angle BAC + \angle BCA + \angle ABC = 180°

 \angle BAC + \angle BCA + 90° = 180°

 \therefore \angle BAC + \angle BCA = 90°

But BA = BC (given)

 \therefore \angle BAC = \angle BCA = x

 $\therefore x + x = 90^{\circ}$

 $2x = 90^{\circ}$

 $\therefore x = 45^{\circ}$

In ΔBCD,

BC = CD

 \therefore \angle CBD = \angle CDB = y

and ext. ∠ACB = Sum of interior opposite angles

∠CBD + ∠CDB

x = y + y = 2y

∴ $2y = 45^{\circ}$

 $y = \frac{45^{\circ}}{2} = 22.5^{\circ} \text{ or } 22\frac{1}{2}^{\circ}$

(vii) In the figure,

AB is the diameter of circle with centre O.

ST is the tangent at B

 \angle ASB = 65°

In ΔABS

 \because TS is the tangent and OB is the radius

OB \perp ST or \angle ABS = 90°

But in ∆ASB

$$\angle$$
BAC + \angle ASB + \angle ABS = 180° (Angles of a triangle)
x + 65° + 90° = 180°

$$\Rightarrow$$
 x° + 155° = 180° \Rightarrow x = 180° - 155° = 25°

Hence $x = 25^{\circ}$

(viii)In the figure,

AB is the diameter of the circle with centre

O. ST is the tangent to the circle at B.

- : ST is the tangent and OB is the radius
- \therefore OB \perp ST or \angle OBS = 90°
- ∴ In ∆ABS,

$$\angle$$
BAS + \angle BSA + \angle ABS = 180°

[By \angle sum property of \triangle]

$$\Rightarrow$$
 \angle BAS + \angle BSA + 90° = 180°

$$\angle$$
BAS + \angle BSA = 90° \Rightarrow x + y = 90°

$$\therefore x = y = \frac{90^{\circ}}{2} = 45^{\circ}$$

(ix) In the figure,

RS is the diameter of the circle with centre O.

SR is produced to Q. QT is tangent to the circle at P

OP is joined.

QPT is tangent and OP is the radius of the circle

$$\angle OPQ = 90^{\circ}$$

∴ Now in ∆OPQ

By \angle sum prop, of \triangle

$$\angle$$
OQP + \angle POQ + \angle OPQ = 180°

$$\angle OQP + \angle POQ + 90^{\circ} = 180^{\circ}$$

$$\therefore$$
 \angle OQP + \angle POQ = 90°

$$\Rightarrow$$
 36° + x = 90° \Rightarrow x = 90° - 36° = 54°

In \triangle OPS, OP = OS (Radii of the circle)

$$\therefore$$
 \angle OPS = \angle OSP = y

and Ext.
$$\angle POQ = \angle OPS + \angle OSP$$

$$= y + y = 2y$$

$$\Rightarrow$$
 2y = x = 54°

Question 6.

In each of the following figures, O is the j centre of the circle. Find the values of x and y.

Solution:

(i) O is the centre of the circle

∠ABC = 90° (Angles in a semicircle)

By Pythagoras Theorem,

$$AC^2 = AB^2 + AC^2$$

$$= (15)^2 + (8)^2 = 225 + 64$$

$$= 289 = (17)^2$$

$$\therefore$$
 x = 17 cm

$$\therefore y = \frac{1}{2}$$

(: AC is the diameter and AO is the radius of the circle)

$$=\frac{1}{2}\times 17=\frac{17}{2}$$
 cm = 8.5 cm

(ii) O is the centre of the circle.

PT and PS are the tangents to the circle from P.

OS and OT are the radii of the circle

$$\therefore$$
 \angle OSP = \angle OTP = 90°

Now in right $\triangle OPT$ (By Pythagoras Theorem)

$$OP^2 = OT^2 + PT^2 = (5)^2 + (12)^2$$

$$= 25 + 144 = 169 = (13)^{2}$$

$$\therefore$$
 OP = 13 cm \Rightarrow x = 13cm

$$\therefore$$
 y = 12 cm

(iii) O is the centre of the circle OT_1 is the radius, From P, PT_1 and PT_2 are the tangents.

$$OT_1 = 24 \text{ cm } PT_1 = 18 \text{ cm}$$

 \because OT, is the radius and PT₁ is the tangent

$$\therefore$$
 OT₁ \perp PT₁

Now in right $\triangle OPT$, (By Pythagoras Theorem)

$$OP^2 = OT_1^2 + PT_1^2 = (24)^2 + (18)^2$$

$$= 576 + 324 = 900 = (30)^{2}$$

$$\Rightarrow$$
 x = 30 cm

 $:: PT_1 \text{ and } PT_2 \text{ are the tangents from } P$

$$\therefore$$
 PT₂ = PT₁ = 18 cm

$$\Rightarrow$$
 y = 18 cm