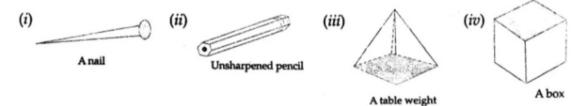
Question 1.

Can a polyhedron have for its faces

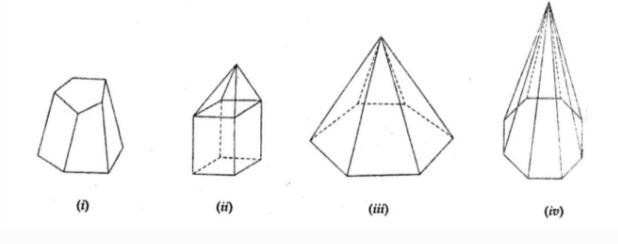

- (i) 3 triangles?
- (ii) 4 triangles?
- (iii) a square and four triangles?

Solution:

- (i) No
- (ii) Yes
- (iii) Yes

Question 2.

Which are prisms among the following?



Solution:

Prisms are only (i) and (iv).

Question 3.

Verify Euler's formula for these solids:

Solution:

	Faces	Vertices	Edges	F + V = E + 2
(i)	7	10	15	7 + 10 = 15 + 2
(ii)	9	5	12	$\Rightarrow 17 = 17$ $9 + 5 = 12 + 2$
(iii)	7	7	12	$\Rightarrow 14 = 14$ $7 + 7 = 12 + 2$
(iv)	9	9	16	$\Rightarrow 14 = 14$ $9 + 9 = 16 + 2$
				⇒ 18 = 18

Question 4.

Can a polyhedron have 15 faces, 30 edges and 20 vertices?

Solution:

Can a polyhedron have 15 faces, 30 edges and 20 vertices.

$$: F + V = E + 2$$

$$\Rightarrow$$
 15 + 20 = 35 and 30 + 2 = 32

∴ It has not.

Question 5.

If a polyhedron has 8 faces and 8 vertices, find the number of edges.

Solution:

A polyhedron has 8 faces and 8 vertices.

:. Number of edges = F + V - 2 = 8 + 8 - 2 = 14

Question 6.

If a polyhedron has 7 faces and 10 vertices, find the number of edges.

Solution:

A polyhedron has 7 faces and 10 vertices.

:. Number of edges = F + V - 2 = 7 + 10 - 2 = 15

Question 7.

Write the number of faces, vertices and edges in

- (i) an octagonal prism
- (ii) decagonal pyramid.

Solution:

	No. of faces	No. of vertices	No. of edges
(i) an octagonal prism:	10	16	24
(ii) decagonal pyramid:	11	11	20

Question 8.

Using Euler's formula, complete the following table:

	Faces	Vertices	Edges
(i)	6	_	12
(ii)	-	5	8
(iii)	14	24	
(iv)	-	16	30
(v)	16	_	42
(vi)	19	19	-

Solution:

	Faces	Vertices	Edges	F + V = E + 2
(i)	6	8	12	12 + 2 = 14
(ii)	5	5	8	6 + 8 = 14 8 + 2 = 10
(iii)	14	24	36	$\therefore 5 + 5 = 10 \\ 14 + 24 = 38$
(iv)	16	16	30	38 - 2 = 36 $30 + 2 = 32$
(v)	16	28	42	16 + 16 = 32 $42 + 2 = 44$
(vi)	19	19	36	16 + 28 = 44 $19 + 19 = 38$
			,	∴ 2 + 36 = 38